Newton-GMRES Preconditioning for Discontinuous Galerkin Discretizations of the Navier--Stokes Equations

نویسندگان

  • Per-Olof Persson
  • Jaime Peraire
چکیده

We study preconditioners for the iterative solution of the linear systems arising in the implicit time integration of the compressible Navier-Stokes equations. The spatial discretization is carried out using a Discontinuous Galerkin method with fourth order polynomial interpolations on triangular elements. The time integration is based on backward difference formulas resulting in a nonlinear system of equations which is solved at each timestep. This is accomplished using Newton’s method. The resulting linear systems are solved using a preconditioned GMRES iterative algorithm. We consider several existing preconditioners such as block-Jacobi and Gauss-Seidel combined with multi-level schemes which have been developed and tested for specific applications. While our results are consistent with the claims reported, we find that these preconditioners lack robustness when used in more challenging situations involving low Mach numbers, stretched grids or high Reynolds number turbulent flows. We propose a preconditioner based on a coarse scale correction with post-smoothing based on a block incomplete LU factorization with zero fill-in (ILU0) of the Jacobian matrix. The performance of the ILU0 smoother is found to depend critically on the element numbering. We propose a numbering strategy based on minimizing the discarded fill-in in a greedy fashion. The coarse scale correction scheme is found to be important for diffusion dominated problems, whereas the ILU0 preconditioner with the proposed ordering is effective at handling the convection dominated case. While little can be said in the way of theoretical results, the proposed preconditioner is shown to perform remarkably well for a broad range of representative test problems. These include compressible flows ranging from very low Reynolds numbers to fully turbulent flows using the Reynolds Averaged Navier Stokes equations discretized on highly stretched grids. For low Mach number flows, the proposed preconditioner is more than one order of magnitude more efficient than the other preconditioners considered.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations

Multigrid algorithms are developed for systems arising from high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations on unstructured meshes. The algorithms are based on coupling both pand h-multigrid (ph-multigrid) methods which are used in non-linear or linear forms, and either directly as solvers or as preconditioners to a Newton-Krylov method. The perform...

متن کامل

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

We present an efficient implicit time stepping method for Discontinuous Galerkin discretizations of the compressible Navier-Stokes equations on unstructured meshes. The Local Discontinuous Galerkin method is used for the discretization of the viscous terms. For unstructured meshes, the Local Discontinuous Galerkin method is known to produce non-compact discretizations. In order to circumvent th...

متن کامل

Scalable Parallel Newton-Krylov Solvers for Discontinuous Galerkin Discretizations

We present techniques for implicit solution of discontinuous Galerkin discretizations of the Navier-Stokes equations on parallel computers. While a block-Jacobi method is simple and straight-forward to parallelize, its convergence properties are poor except for simple problems. Therefore, we consider Newton-GMRES methods preconditioned with block-incomplete LU factorizations, with optimized ele...

متن کامل

Efficient Solution Techniques for Discontinuous Galerkin Discretizations of the Navier-Stokes Equations on Hybrid Anisotropic Meshes

The goal of this paper is to investigate and develop fast and robust solution techniques for high-order accurate Discontinuous Galerkin discretizations of non-linear systems of conservation laws on unstructured meshes. Previous work was focused on the development of hp-multigrid techniques for inviscid flows and the current work concentrates on the extension of these solvers to steady-state vis...

متن کامل

Symmetric Interior Penalty Dg Methods for the Compressible Navier–stokes Equations I: Method Formulation

In this article we consider the development of discontinuous Galerkin finite element methods for the numerical approximation of the compressible Navier–Stokes equations. For the discretization of the leading order terms, we propose employing the generalization of the symmetric version of the interior penalty method, originally developed for the numerical approximation of linear self-adjoint sec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2008